Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
〔数〕 項の個数が有限個であるような級数。
〔数〕 小数点以下の桁数(ケタスウ)が無限であるような小数。 数字が循環するものと循環しないものがある。
限度・限界のある・こと(さま)。
超限数(ちょうげんすう、英: Transfinite number)とは数学において、すべての有限数よりも大きい数であり、"無限"ではあるが必ずしも"絶対無限"とは限らない。これらには、無限集合の濃度を表現するための超限基数(英: transfinite cardinals)と、無限集合の順序を表現するため使われる超限順序数(英:
の群の構造には n の素因数分解に依存してある制限が加わる。例えば素数 p , q に対して、 q < p かつ p -1が q で割り切れない場合は、位数 pq の群は必ず巡回群となる。必要十分条件については巡回数 (群論)(英語版)を参照されたい。 n に平方因子が存在しない場合、位数 n の群
このタイプの有限オートマトンは入力を受容(accept)したり、理解(recognize)して、外界に結果を知らせるために状態(state)を使用する。つまり、最終的に受容状態になったかどうかで「はい」または「いいえ」のいずれかを出力として返す。FSMの全状態は受容状態かそうでないかのいずれかである。全入力
有限体(ゆうげんたい、英語:finite field)とは、代数学において、有限個の元からなる体、すなわち四則演算が定義され閉じている有限集合のことである。主に計算機関連の分野においては、発見者であるエヴァリスト・ガロアに因んでガロア体あるいはガロア域(ガロアいき、Galois field)などとも呼ぶ。
の部分集合 A が補有限(ほゆうげん、英: cofinite; 余有限)であるとは、A の X における補集合が有限集合であることをいう。すなわち、補有限集合 A は「 X の有限個の例外を除く全ての元を含む」ような X の部分集合である。補集合が有限でなく可算である場合、その集合は補可算(あるいは余可算)であるという。