Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
〔数〕 項の数が無限である数列。
〔数〕 項の個数が有限個であるような級数。
数列がある極限に存在すれば、それは収束列であり、そうでなければ発散列である。 実数列 (xn) が収束するのは上極限 lim sup n → ∞ x n {\displaystyle \limsup _{n\to \infty }x_{n}} と下極限 lim inf n → ∞ x n {\displaystyle \liminf
限度・限界のある・こと(さま)。
漸化式を解くとは、漸化式で与えられている数列 (an) の一般項 an を n の陽な式で表すことである。 等差数列や等比数列は、その定義から極めて単純な漸化式を持つ。一般の等差数列に対する漸化式は an+1 = an + d という形に表される。定数 d はその等差数列の公差である。この漸化式は簡単に解けて、一般項は an =
超限数(ちょうげんすう、英: Transfinite number)とは数学において、すべての有限数よりも大きい数であり、"無限"ではあるが必ずしも"絶対無限"とは限らない。これらには、無限集合の濃度を表現するための超限基数(英: transfinite cardinals)と、無限集合の順序を表現するため使われる超限順序数(英:
の群の構造には n の素因数分解に依存してある制限が加わる。例えば素数 p , q に対して、 q < p かつ p -1が q で割り切れない場合は、位数 pq の群は必ず巡回群となる。必要十分条件については巡回数 (群論)(英語版)を参照されたい。 n に平方因子が存在しない場合、位数 n の群
このタイプの有限オートマトンは入力を受容(accept)したり、理解(recognize)して、外界に結果を知らせるために状態(state)を使用する。つまり、最終的に受容状態になったかどうかで「はい」または「いいえ」のいずれかを出力として返す。FSMの全状態は受容状態かそうでないかのいずれかである。全入力