Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
初等組合せ論における順列(じゅんれつ、英: sequence without repetition, partial permutation、仏: arrangement)は、区別可能な特定の元から有限個を選んで作られる重複の無い有限列をいう。 初等組合せ論における「順列と組合せ」はともに n-元集合から
計算すること。 運算(ウンザン)。
ビット演算(ビットえんざん、英: bitwise operation)とは、主にコンピュータで行われる演算のひとつで、データをビット列(つまり0か1が多数並んだもの)と見なして、各ビットの移動やビット単位での論理演算を行うもの。 デジタルコンピュータの内部では、情報をビット列
ブーリアン演算(ブーリアンえんざん)または集合演算(しゅうごうえんざん)とは、3次元コンピュータグラフィックスやCAD等の形状モデリングにおいて、体積を持った形状(3次元の場合)を集合とみなし、複数の形状を和、差、積といった集合演算により組み合わせ、合成された形状を作る演算
演算子の優先順位 (えんざんしのゆうせんじゅんい、英: precedence of operators) とは、演算子を利用しているような数式などが、どのように結び付いてグループ化されるべきであるかを、優先順位すなわち構文における優先度の強弱によって、あらかじめ暗黙に定めた規則である。数学ではしば
重複順列を得る。 重複順列の定義の仕方は(同値なものが)いくつかある。 定義 1 位数 n (n ∈ ℕ⁎) の有限集合 E と非負整数 k が与えられたとき、E の元からなる k-重複順列(または n 個の元から重複を許して k 個選んで作られる k-項順列)とは、E の元を要素とする
完全順列(かんぜんじゅんれつ、英: complete permutations)、もしくは攪乱順列(かくらんじゅんれつ、英: derangement)とは、整数 1, 2, 3, …, n を要素とする順列において、i 番目 (i ≦ n) が i でない順列である。順列を置換とみると、完全順列は不動点の個数が
演算子法(えんざんしほう)とは、解析学の問題、特に微分方程式を、代数的問題(普通は多項式方程式)に変換して解く方法。オリヴァー・ヘヴィサイドの貢献が特に大きいので「ヘヴィサイドの演算子法」とも呼ばれるが、厳密な理論化はその後の数学者たちにより行われた。 関数に対する微分や積分その他の演算