Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
短軸という。短軸の長さを短径という。 長軸と短軸の交点は楕円の中心と呼ばれる。 長軸を中心で分けた2つの線分は半長軸と呼ばれ、その長さを長半径という。 短軸を中心で分けた2つの線分は半短軸と呼ばれ、その長さを短半径という。 短径と長径の比は楕円率と呼ばれる。 2次元直交座標系で、原点
スーパー楕円(スーパーだえん、英: Superellipse)は楕円に類似した閉曲線である。この曲線は長軸、短軸およびそれらについての対称性という点で楕円と同様の幾何学的特徴を持つが、全体の形状は異なる。 直交座標系では、次の式を満たすすべての点 (x, y) の集合である | x a | n +
長円状(2つの半円を直線で繋いだ陸上競技のトラックのような形状)であった(写真)。市販されたホンダ・NRでは正規楕円包絡線形状(楕円の周上に、小円の中心を置き、小円を移動して形成される包絡線)に変更された。英語でもellipticalともされるがovalともされる。 楕円形
楕円体(だえんたい、ellipsoid)とは楕円を三次元へ拡張したような図形であり、その表面は二次曲面である。楕円面の方程式は x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 {\displaystyle {\frac {x^{2}}{a^{2}}}+{\frac {y^{2}}{b^{2}}}+{\frac
楕円フィルタ(英: Elliptic filter)またはカウアーフィルタ(英: Cauer filter)は、通過帯域と除去帯域で等リップル性(equiripple)を示すフィルタ回路の一種。各帯域のリップル量は個別に調整可能で、リップルの値が同じ同一次数の他のフィルタと比較すると、通過帯域
ポワンソーの楕円体(Poinsot's ellipsoid)あるいは慣性楕円体とは、外部トルクが作用せず自由回転する剛体の運動を可視化するポワンソーの作図法において用いられる楕円体である。この運動では、運動エネルギーおよび慣性座標系から見た角運動量の3成分の合計4つの量が保存される。回転体の角速度ベクトル
楕円銀河 (だえんぎんが、英: elliptical galaxy)は、渦巻銀河、レンズ状銀河とともに、ハッブル分類における主要な3つの銀河分類のうちの1つ。滑らかなおよそ楕円形の形状を持ち、輝度プロファイルにほとんど特徴がない。球形に近い形から非常に扁平なものまであり、内部に1000万から1兆個
数学における楕円曲線(だえんきょくせん、英: elliptic curve)とは種数 1 の非特異な射影代数曲線、さらに一般的には、特定の基点 O を持つ種数 1 の代数曲線を言う。 楕円曲線上の点に対し、先述の点 O を単位元とする(必ず可換な)群をなすように、和(この和は和差積商の和のこと)を代