Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
現れる場合、第二種積分方程式と呼ばれる。 既知の関数 f (下記参照)が恒等的に 0 の場合、同次積分方程式と呼ばれ、f が 0 でない場合、非同次積分方程式と呼ばれる。 4種類の積分方程式(同次・非同次方程式をまとめた)の例として以下のように書ける。 ただし ϕ {\displaystyle \phi
フレドホルム方程式は(以下に定義する)核函数を含む積分方程式で積分の限界が定数であるようなものである。これは積分の限界が変数であるヴォルテラ積分方程式とは形の上で近い関係にある。 非等質 (inhomogeneous) な第一種フレドホルム積分方程式は g ( t ) = ∫ a
数学におけるヴォルテラ積分方程式(ヴォルテラせきぶんほうていしき、英: Volterra integral equation)とは、積分方程式の一つの特別な形である。その形状により第一種と第二種に分かれる。 線型の第一種ヴォルテラ積分方程式は f ( t ) = ∫ a t K ( t , s ) x
一定のやり方・形式・手続き。
〔数〕 二個以上の未知数を含む二つ以上の方程式の組。 それらの方程式を同時に成り立たせる未知数の値の組をこの連立方程式の解といい, 解をすべて求めることを連立方程式を解くという。 未知数に関する最高の次数により連立一次方程式・連立二次方程式などという。
{\displaystyle k(x,y)} は点 y {\displaystyle y} から点 x {\displaystyle x} への移動確率で、しばしば分散核 (dispersal kernel) と呼ばれる。積分差分方程式は、多くの節足動物や一年生植物を含む単化性(英語版)個体群をモデル化する際に最も
数学において積分微分方程式(せきぶんびぶんほうていしき、英: integro-differential equation)とは、ある函数の積分と微分のいずれも含むような方程式のことを言う。 一般的な一階線型の積分微分方程式は、次のような形状を持つ。 d d x u ( x ) + ∫ x 0 x f
(1)ある数を三度掛け合わせること。 三乗。