Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
INFORMATION IS STORED AND TRANSFERRED FROM ONE CORE TO ANOTHER. ^ 不揮発性である一方で、破壊読み出しでもあるため、DRAMと同様に読んだら書き戻さなければならない、という点は現代の我々からはすぐにはピンと来ない特性である。 磁気を使った新しい論理演算素子
量子論理(りょうしろんり、quantum logic)とは、量子論において見られる現象と相似するような形式論理の体系で、分配律が成り立たない無限多値の論理である。ギャレット・バーコフとジョン・フォン・ノイマンの1936年の論文に始まり、1960年代に直交モジュラー束(orthomodular
事象と比較して簡潔であり、さらに既存の知識や常識とは反する自明ではない結論を導き出し、しかも原因としての独立変数と結果の従属変数を繋ぐ枠組みが明快でなければならない。最後に理論はその真偽を問うことが可能な性質、つまり反証可能性を保持しなければならない。以上の理論の対象となっている事象の重要性や実務的な実践性を加えることもできる。
量子脳理論(りょうしのうりろん)は、脳のマクロスケールでの振舞い、または意識の問題に、系の持つ量子力学的な性質が深く関わっているとする考え方の総称。心または意識に関する量子力学的アプローチ(Quantum approach to mind/consciousness)、クオンタム・マインド(Quantum
の原子論理式を示し、次に論理式から論理式を形成するルールを与えるという帰納的な方法によって定義される(再帰的定義)。複数の原子論理式から構成される論理式を複合論理式という。 例として命題論理に関する論理式の定義を示す 任意の命題変数 p は論理式(かつ原子論理式)である 任意の論理式 A が与えられたとき、その否定
論理演算子(ろんりえんざんし、英: logical operator)は、コンピュータ・プログラミングや命題論理等における論理演算の演算子の総称である。 多くのプログラミング言語では、論理積と論理和および否定のための演算子が用意されている。 C言語やその影響を受けた構文を持つ言語では、論理積の演算子に
格子」という形式に離散化して表現するのが格子上の場の理論である。物理量の計算は格子上で行われるが、最終的には連続極限(格子間隔をゼロにする極限)をとることで、本来の連続的な理論を得ることができる。 格子上の場の理論において、クォークなどのフェルミオンは格子上の格子点
クと660nmの発光ピークが明らかになる。酸を加えることにより第3級アミンのプロトン化が内部電荷移動をもたらすため、両方のピークで浅色シフトが起こる。観察される発光の色は黄色である。強塩基を加えるとフェノールのヒドロキシル基は脱プロトン化され、結果光誘起電子移動が起こり分子が非発光となる。酸と塩基