Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
グラフ理論において、誘導部分グラフ(ゆうどうぶぶんグラフ、英: induced subgraph)とは、部分グラフの一種であり、あるグラフから、一部の頂点を取り出し、その頂点対の辺の有無が元のグラフと一致するグラフである。部分グラフは元のグラフから任意の頂点と任意の辺を選択して取り出したグラフ
の任意の頂点が隣接するグラフを完全2部グラフという。頂点集合が m 頂点とn 頂点に分割される完全2部グラフを Km,n と書く。 辺を共有する頂点を異なる色で塗ることを(頂点)彩色という。よって、n 部グラフは n 彩色可能なグラフに他ならない。同様に、頂点を共有する辺を異なる色で塗ることを辺彩色という。 2部グラフ
〖graph〗
全体をいくつかに分けたものの一部。 また, 小分けしたもの。
部分積分(ぶぶんせきぶん、英: Integration by parts)とは、微分積分学・解析学における関数の積の積分に関する定理であり、積の積分をより計算が容易な積分に変形するために頻繁に使われる手法である。 具体的には、2つの微分可能な関数 u ( x ) {\textstyle u(x)}
アーベルの級数判定法はクロネッカーの補題(英語版)の証明に用いられる。同補題は分散が従属関係にある制約条件下での大数の強法則の証明に利用できる。 アーベルの定理の証明にアーベルの級数変形法はよく用いられる。 アーベルの級数変形法はある種の級数の収束判定法の証明に用いられる。 判定法 1 ∑ bn が収斂級数
完全2部グラフ(かんぜんにぶグラフ、英: complete bipartite graph)は、グラフ理論において、2部グラフのうち特に第1の集合に属するそれぞれの頂点から第2の集合に属する全ての頂点に辺が伸びているものをいう。bicliqueとも。 完全2部グラフ G := ( V 1 + V 2
代数学における部分分数分解(ぶぶんぶんすうぶんかい、英: partial fraction decomposition)とは、有理式(あるいは分数式ともいう、多項式の商で表される式のこと)に対し、その有理式の分母が互いに素な多項式の積で表されるとき、その有理式を多項式と複数の有理式(ただし、分子の次数は分母