Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
代数学における部分分数分解(ぶぶんぶんすうぶんかい、英: partial fraction decomposition)とは、有理式(あるいは分数式ともいう、多項式の商で表される式のこと)に対し、その有理式の分母が互いに素な多項式の積で表されるとき、その有理式を多項式と複数の有理式(ただし、分子の次数は分母
十進法の文脈では「十個に切り分ける」ということから、様々な計量単位や割合の1/10を表すために使われる。 「割」と共に使われる場合には、「分」が百分の一を意味すると誤解されることがある(後述)。なお、厘は分の1⁄10であり、分の上位の単位の百分の一である。
帯分数は掛け算と混同される恐れがある。k+n/d と書いた際、掛け算 k × n/d と足し算 k + n/d のいずれとも解釈でき、掛け算と帯分数を区別できない。そのため、具体的な数量を扱う場面を除いては帯分数は用いられない。 分子または分母が分数で表される分数を繁分数(はんぶんすう、英:
全体をいくつかに分けたものの一部。 また, 小分けしたもの。
部分積分(ぶぶんせきぶん、英: Integration by parts)とは、微分積分学・解析学における関数の積の積分に関する定理であり、積の積分をより計算が容易な積分に変形するために頻繁に使われる手法である。 具体的には、2つの微分可能な関数 u ( x ) {\textstyle u(x)}
アーベルの級数判定法はクロネッカーの補題(英語版)の証明に用いられる。同補題は分散が従属関係にある制約条件下での大数の強法則の証明に利用できる。 アーベルの定理の証明にアーベルの級数変形法はよく用いられる。 アーベルの級数変形法はある種の級数の収束判定法の証明に用いられる。 判定法 1 ∑ bn が収斂級数
hinge) という。1 / 4 分位数(第1四分位数)を下側四分位数、3 / 4 分位数(第3四分位数)を上側四分位数ともいう。 単に四分位数といったばあい、第1・第3四分位数を表す。第2四分位数は中央値である。これらは、分布のばらつきを表すのに使う。 第1・第3四分位数の差 Q 3 / 4 − Q
数論における分割数(ぶんかつすう、英: partition function)p(n) は自然数 n の分割(n をその順番の違いを除いて自然数の和として表す方法)の総数を表す数論的函数である。ただし、規約として p(0) = 1 および負の整数 n < 0 に対して p(n) = 0 と定める。