Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
数学において、離散化 (discretization) 連続関数、モデル、変数、方程式を離散的な対応する物へ移す過程のこと。この過程は普通、それらをデジタルコンピュータ上での数値評価および実装に適したものにするために最初に行われるステップである。二分化 (dichotomization) は離散
R(標準的な距離位相をいれる)の離散部分群であるが,有理数の全体 Q は離散部分群ではない.離散群とは離散位相を備えた位相群である. 任意の群には離散位相を与えることができる.離散空間からの任意の写像は連続であるから,離散群の間の位相的準同型はちょうどその群の間の群準同型である.したがって,群の圏と離散
〖data〗
動的データ交換(どうてきデータこうかん、英語:Dynamic Data Exchange, DDE)は、WindowsやOS/2環境下において、複数のアプリケーションソフトウェア(アプリケーション)間で通信を行う技術である。 DDEが発表されたのは1987年のWindows 2
代数的データ型(だいすうてきデータがた、英: algebraic data type)とはプログラミング、特に関数型プログラミングや型システムにおいて使われるデータ型である。それぞれの代数的データ型の値には、1個以上のコンストラクタがあり、各コンストラクタには0個以上の引数がある。 代数的データ型
代数学における離散対数(りさんたいすう、英: discrete logarithm)とは、通常の対数の群論的な類似物である。 離散対数を計算する問題は整数の因数分解と以下の点が共通している: 両方とも難しい(量子コンピュータ以外では効率的に解くアルゴリズムが得られていない) 片方に対するアルゴリズムはしばしばもう片方にも利用できる
他に、学校教育の領域で教えられているものには行列、集合、順列・組合せ、論理と証明、帰納法と漸化式、数列などがある。それら以外で、金融経済や産業経済の領域で科学技術として利用されているものにはゲーム理論、マルコフ連鎖、社会選択理論、投票理論、ビンパッキング問題、記号論などがある。
離散信号(英: Discrete signal)もしくは離散時間信号(英: Discrete-time signal)は、連続信号を標本化した信号の時系列である。連続信号とは違い、離散信号は連続信号の関数ではないが量の系列である、つまり離散的な整数の範囲の関数である。これらの系列の値を「標本値(sample)」という。