Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
数学の特に初等解析学における二項級数(にこうきゅうすう、英: binomial series)は二項式の冪(べき)のマクローリン級数を言う。 具体的に、α を任意の複素数として、函数 f が f(x) = (1 + x)α で与えられるとき、マクローリン展開 ( 1 + x ) α = ∑ k =
において x = 1 かつ y = 1 とすれば得られる。これはパスカルの三角形の各行において現れる全ての数を足し合わせれば 2 の整数冪になると言っても同じである。この事実の組合せ論的解釈は二通りに数える論法(英語版) (double counting) で n元-集合 S の位数 i (i =
数学、とくに解析学における交項級数(こうこうきゅうすう)または交代級数(こうたいきゅうすう、英: alternating series)とは項の正負が交互に入れ替わる無限級数 a 0 − a 1 + a 2 − a 3 + ⋯ = ∑ n = 0 ∞ ( − 1 ) n a n ( for ∀ n
演算を持っている: 環 K の内部演算(フランス語版)としての加法および乗法によって、係数同士の和と積ができる。 環 K による外部演算(フランス語版)としてのスカラー乗法によって、K の元を L の元に掛けることができる。 L の内部演算としての乗法により、L の元としての
数学における定数多項式(ていすうたこうしき、英: constant polynomial)は、定数項(英語版)以外の全ての項に関して、その係数が零であるような多項式を言う。 零多項式は定数項も含めたすべての項の係数が零となるような多項式で、もちろん定数多項式に含む。 定数多項式に付随する多項式函数は定数
首の後ろの部分。 「うなじ」「うなだれる」「うなずく」など, 他の語の上に付いて複合語をつくる。
首の後ろの部分。 えりくび。
えりくび。