Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
数学の一分野である圏論におけるアーベル群の圏(あーべるぐんのけん、英: category of abelian groups)Ab は、アーベル群を対象とし群準同型を射とする圏である。アーベル群の圏はアーベル圏の原型であり、実際に任意の小さいアーベル圏は Ab に埋め込める。 アーベル群の圏 Ab の零対象は、単位元のみからなる自明群
〖Abel〗
アーベル賞(アーベルしょう)は、顕著な業績をあげた数学者に対して贈られる賞である。 2001年、ノルウェー政府は同国出身である数学者ニールス・アーベルの生誕200年(2002年)を記念して、アーベルの名を冠した新しい数学の賞を創設することを公表し、そのためにニールス・ヘンリック・アーベル基金を創設した。
群の場合、この定理によりそのような任意のアーベル群がねじれ群と自由アーベル群の直和に分解できることが保証される。そのときのねじれ群は、適当な素数 p に対する素冪位数巡回群 Z/pkZ の形の群の有限個の直和であり、自由アーベル群は無限巡回群 Z の有限個のコピーの直和になっている。 アーベル群の間の二つの群準同型
ニールス・ヘンリック・アーベル(Niels Henrik Abel ノルウェー語: [ˈɑ̀ːbl̩]、1802年8月5日 - 1829年4月6日)は、ノルウェーの数学者。 1802年8月5日 - ノルウェーのフィンドー(Findö)の牧師の家に生まれる。 1815年11月 - クリスチャニア大学のカテドラル・スクールに入学。
かこったところ。 輪。
有限体の全ての有限拡大は、巡回拡大である。類体論の発展は、数体と局所体と、有限体上の代数曲線の函数体のアーベル拡大についての詳細な情報をもたらした。 円分拡大という概念があり、2つの少し異なる定義がある。1つは1の冪根による拡大のことであり、もう1つはその部分拡大のことである。例えば円分体は円分
抽象代数学において、自由アーベル群 (free abelian group) あるいは自由 Z-加群 (free Z-module) とは基底をもったアーベル群のことを言う。 アーベル群であるという条件は、結合的、可換、可逆な二項演算をもった集合であることを意味し、慣習的に演算は「加法」として、逆元