Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
s、直径を d、矢を c とすると、半弧 s/2 が c と d の無限級数で表せることを導いた。さらに松永良弼・久留島義太によって、逆三角関数・三角関数の無限級数展開の公式が作られた。安島直円は円柱の相貫体の体積を二重級数で示し、円弧の長さを求めるのに弦を等分するなどの方法を考え出した。幕末にな
1637年、『方法序説』を公刊する。 1641年、デカルト45歳のとき、パリで『省察』を公刊する。この『省察』には、公刊前にホッブズ、ガッサンディなどに原稿を渡して反論をもらっておき、それに対しての再反論をあらかじめ付した。『省察』公刊に前後してデカルトの評判は高まる。その一方で、この年の暮れからユトレ
公理に基づき, 論証によって証明された命題。 また特に, 重要なもののみを定理ということがある。
2点P,Qから、それぞれ線分 AB を見込む2つの角∠BPA, ∠BQA の和が平角(=180°)に等しければ、4 点 A,B,P,Q は共円である。 これは、共円四角形の定理「円に内接する四角形の対角の和は180度」の逆にあたる内容である。 2点 P,Q から、それぞれ線分 AB を見込む 2
も定理に関わる文章が見られる。しかし、これはバビロニア数学の影響を受けた結果ではないかという推測もされているが、結論には至っていない。 「ピュタゴラス(ピタゴラス)の定理」という呼称が一般的になったのは、西洋においても少なくとも20世紀に入ってからである。 日本の和算でも、中国での呼称を用いて鉤股弦
ロッサーの定理(英: Rosser's theorem)とは、ジョン・バークリー・ロッサーが1938年に証明した、素数に関する定理である。 Pn を n 番目の素数とする(P1 = 2、P2 = 3、...)。このとき、次の不等式が成立する。 Pn > n log n Rosser, J. B. "The
リウヴィルの定理には以下の4つの定理が存在する。 リウヴィルの定理 (解析学) - 解析学においてジョゼフ・リウヴィルにちなんだ定理。 リウヴィルの定理 (物理学) - ハミルトン力学において位相空間の体積要素は時間変化しないという定理。 リウヴィル=アーノルドの定理 -
ウィルソンの定理(ウィルソンのていり、英: Wilson's theorem)は初等整数論における素数に関する次のような定理である。 ウィルソンの定理 ― p が素数ならば (p − 1)! ≡ −1 (mod p) が成り立つ。 逆に、整数 p > 1 に対し、(p − 1)! ≡ −1 (mod