Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
点の集合が(異なる複数の円に対して)共円になるということも起きる(九点円 やレスターの定理などを参照)。 共円点の集合が共有する円の半径は、定義により、それら共円点のうちの三つを頂点とする任意の円の外接円の半径に等しい。そのような三点の各二点間の距離を a, b, c とすれば、共有円の半径は
Four color theorem)とは、厳密ではないが日常的な直感で説明すると「平面上のいかなる地図も、隣接する領域が異なる色になるように塗り分けるには4色あれば十分だ」という定理である。 グラフ理論的に言えば、この定理はループのない平面グラフに対して次のことを述べている。平面グラフ G {\displaystyle
concurrent)であるという。 射影幾何学の観点からは、平面における直線の共点性(共点線族)は、点の共線性(共線点族)の双対概念(英語版)である。また三次元空間における共点性は、共面性の双対となる(共点面族の双対は共面点族であり、共点線族の双対は共面線族である)。 ルーシェ–カペリの定理に従えば、線型方程式系
s、直径を d、矢を c とすると、半弧 s/2 が c と d の無限級数で表せることを導いた。さらに松永良弼・久留島義太によって、逆三角関数・三角関数の無限級数展開の公式が作られた。安島直円は円柱の相貫体の体積を二重級数で示し、円弧の長さを求めるのに弦を等分するなどの方法を考え出した。幕末にな
i {\displaystyle where\ w_{i}=k_{i}z_{i}} 複号および複素数の平方根の多価性により1つの k4 に対し2つの解が得られ、そのうちの一方が正しい中心を与える。 n次元への一般化はソディ–ゴセの定理と呼ばれる。n次元ユークリッド空間において全てが互いに接する超球の最大数は
(1)定まった位置の点。 一定の場所・地点。
数学における不動点定理(ふどうてんていり、英: fixed-point theorem)は、ある条件の下で自己写像 f: A → A は少なくとも 1 つの不動点 (f(x) = x となる点 x ∈ A)を持つことを主張する定理の総称を言う。不動点定理は応用範囲が広く、分野を問わず様々なものがある。
特異点定理(とくいてんていり)またはペンローズ・ホーキングの特異点定理(Penrose–Hawking singularity theorems)は、重力は重力の特異点を必要とするかどうか、という問いへの、一般相対性理論による結論のまとめである。 これらの定理は、物質は妥当なエネルギー状況 (energy