Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
冪集合(べきしゅうごう、英: power set)とは、数学において、与えられた集合から、その部分集合の全体として新たに作り出される集合のことである。べきは冪乗の冪(べき)と同じもので、冪集合と書くのが正確だが、一部分をとった略字として巾集合とも書かれる。 集合
和集合の公理(わしゅうごうのこうり、英: axiom of union)とは、ZF公理系を構成する公理の一つで、任意の集合に対し、その要素の要素全体からなる集合の存在を主張するものである。対の公理と合わせることで、任意の二つの集合に対し、それらの要素のみからなる集合(和集合)の存在が導ける。 任意の集合
公理的集合論(こうりてきしゅうごうろん、axiomatic set theory)とは、公理化された集合論のことである。 現在一般的に使われている集合の公理系はZF (ツェルメロ=フレンケル) 公理系、またはZF公理系に下で述べる選択公理(Axiom of Choice)を加えた ZFC公理系(Zermelo-Fraenkel
空集合の公理 (くうしゅうごうのこうり、英: axiom of empty set) は、ツェルメロ=フレンケル集合論やKP集合論の公理の一つで、「いかなる要素も含まない集合が存在する」ことを主張するものである。ただし、この公理を採用しないZF公理系の定式化も存在する。 「ある集合 x が存在して、任意の
〔数〕 同一の数や文字を何度か掛け合わせたもの。 累乗。
(1)いくつかのものを一か所に集めること。 また, 集まること。 聚合。
(1)一般に広く通用する真理・道理。
(1)論理にかなっていて理性でとらえることができること。