Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
結合された原子中の原子軌道の数と等しくなければならない。 不正確であるが定性的に有用な分子構造の議論のために、分子軌道は「原子軌道の線形結合分子軌道法」アンザッツ(LCAO法)によって得ることができる。ここでは、分子軌道は原子軌道の線形結合として表現される。
軌道法はしばしば原子価結合法と比較されることがある。 1927年に原子価結合法が成立した後、フリードリッヒ・フント、ロバート・マリケン、ジョン・クラーク・スレイター、ジョン・レナード-ジョーンズらによって開発された。分子軌道理論はもともと「フント-マリケン理論
〖diagram〗
電子軌道(でんしきどう、英: electron orbital)とは、電子の状態を表す、位置表示での波動関数のことを指す。電子軌道は単に「軌道」と呼ばれることもある。 20世紀初頭にジャン・ペラン、長岡半太郎、アーネスト・ラザフォードらは独立に原子核の周りを電子が運動するという原子模型を提唱した。
原子軌道(げんしきどう)または原子オービタル(英: atomic orbital、略称AO)は、原子核のまわりに存在する1個の電子の状態を記述する波動関数のことである。電子波動関数の絶対値の二乗は原子核のまわりの空間の各点における、電子の存在確率に比例する(ボルンの規則)。 ここでいう軌道(英:
局在化分子軌道(きょくざいかぶんしきどう、英: localized molecular orbital)は、分子の限定された空間領域に集中した分子軌道である。例としては、結合あるいは孤立電子対がある。局在化分子軌道は、分子軌道計算と単純な結合理論を関連付けるために使用することができ、電子相関の局所
(1)電車などを通すための道。 道床・枕木・レールなどからなる。 線路。
経験的分子軌道法(けいけんてきぶんしきどうほう, empirical molecular orbital method)に分類される方法には次の二つが挙げられる。 (単純)ヒュッケル法 (Hückel method) E. Hückel (1931) による。 拡張ヒュッケル法 (extended Hückel