Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
である。数学で現れる群の多くの例は局所コンパクトでありそのような群はハール測度と呼ばれる自然な測度を持っているから局所コンパクト群は重要である。これによって G 上のボレル可測関数の積分を定義することができフーリエ変換や L p {\displaystyle L^{p}} 空間といった標準的な解析学の概念を一般化することができる。
{p}}} で表される。S−1R のことを RS と表すこともあるが、通常混乱の恐れはない。 局所化は完備化と重要な関係があり、環を局所化すると完備になるということがよくある[要検証 – ノート]。 「局所化」の名の起源は代数幾何学にある。R はある幾何学的対象(代数多様体)の上で定義された函数環とする。この多様体を点
(\forall a\in A)} となるものをいう。M とその部分加群 A が与えられたとき、商 G-加群あるいは G-商加群または剰余 G-加群あるいは G-剰余加群 (G-quotient module) M/A が、作用を考えない抽象群としての剰余群 M/A に G の作用を g ⋅ ( m + A )
加群(かぐん) 環上の加群 (R-module) その特別な場合であるアーベル群 (abelian group) も単に加群と呼ぶ場合がある。 リー環上の加群 (g-module) 群上の加群 (G-module) D加群 微分加群 このページは数学の曖昧さ回避のためのページです。一つの語句が複数の
局所銀河群(きょくしょぎんがぐん、英語: Local Group)または局部銀河群(きょくぶぎんがぐん)は、太陽系の所属する天の川銀河(Milky Way Galaxy)が所属する銀河群である。 局所銀河群は、天の川銀河を含む大小50 - 60個以上の銀河で構成されている。
{\displaystyle \operatorname {H} ^{i}(X,-)} を大域切断関手(英語版) Γ ( X , − ) {\displaystyle \Gamma (X,-)} の i 次右導来関手として定義でき,実際そう定義する. 環付き空間 (X, O) が与えられ,F が O の O
線型代数学は K-ベクトル空間の圏 K-Vect の研究としてとらえることができる。例えば、ベクトル空間の次元定理(英語版)(基底数一定定理)は K-Vect の同型類の全体が濃度(基数)とちょうど対応することを述べるものであり、かつ K-Vect が任意の基数 n に対する自由ベクトル空間
(1)全体の内のある限られた一部分。 局部。