Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
数学、とくにホモロジー論と代数トポロジーにおいて、コホモロジー (cohomology) はコチェイン複体から定義されるアーベル群の列を意味する一般的な用語である。つまり、コホモロジーはコチェイン、コサイクル、そしてコバウンダリの抽象的な研究として定義される。コホモロジー
ホモロジーはエタール景上のコホモロジーと言い換えることができる。 エタール・コホモロジーは係数がZ/nZの場合には上手く働くが、ねじれを持たない(たとえば整係数や有理係数)場合は満足する結果を与えない。エタール・コホモロジーからねじれを持たないコホモロジー
モチヴィック・コホモロジー(英: motivic cohomology)とは、代数多様体などのスキームの不変量のひとつである。モチーフに関係する一種のコホモロジーであり、代数的サイクルのチャウ環(英語版)を特別な場合として含んでいる。代数幾何学と数論における最も深い問題のいくつかはモチヴィック・コホモロジーを理解しようとする試みである。
{torsion} } を第二ホモロジーの捩れ部分群を法(modulo)(英語版)とした商環とし、R を単位元を持つ任意の可換環とし、Λ を次の形の微分形式の形式的ベキ級数の環とする。 λ = ∑ A ∈ H 2 ( X ) λ A e A , {\displaystyle \lambda =\sum _{A\in
F) が最も興味が持たれ、他の Hi(X,F) 上の消滅定理によりランクを計算する一つの方法がある。この方法は、標準的な間接的な層の理論の方法で数値的な結果がもたらされる。 局所可縮な位相空間に対し、A に係数を持つ特異コホモロジー群は、任意のアーベル群 A に対し、A の定数層とする層コホモロジー群に一致する
(\forall a\in A)} となるものをいう。M とその部分加群 A が与えられたとき、商 G-加群あるいは G-商加群または剰余 G-加群あるいは G-剰余加群 (G-quotient module) M/A が、作用を考えない抽象群としての剰余群 M/A に G の作用を g ⋅ ( m + A )
はそれらの団体の教職養成のためウェスレアン・ホーリネス神学院を設立した。 1992年(平成4年) 「ホーリネスの群教会連合」と「ホーリネス福音同志会」が合同して、淀橋教会の峯野龍弘らにより「ウェスレアン・ホーリネス教会連合」(現、ウェスレアン・ホーリネス教団)が結成された。
とすれば、U の左随伴は合成函手 KF: Set → Mon → Grp に等しい。 群の圏 Grp における単型射(圏論的単射)はまさに単準同型であり、全型射(圏論的全射)は全準同型、同型射は双射準同型が与える。 群の圏 Grp は完備かつ余完備である。Grp における圏論的直積はちょうど群の直積で与え