Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
〖gauss〗
〖Karl Friedrich Gauß〗
平面(へいめん、plane)とは、平らな表面のことである。平らな面。一般的には曲面や立体などと対比されつつ理解されている。 数学的には平面について様々な説明の仕方がありうる。 ひとつは次のような説明である。 (平面とは)ある曲面の任意の2点を通過する直線が、常に全くその曲面に含まれるときの、その曲面のこと
ガウス賞(ガウスしょう、Carl Friedrich Gauss Prize)は、社会の技術的発展と日常生活に対して優れた数学的貢献をなした研究者に贈られる賞。4年に1度の国際数学者会議(ICM)の開会式において授与される(同時に授賞式が行われるものとしてフィールズ賞とネヴァンリンナ賞がある)。
を法とする整数の剰余環上のガウス和は、ガウス周期(英語版)と呼ばれる密接に関連する和の線形結合である。 ガウス和の絶対値は、有限群上のプランシュレルの定理の応用の場面で通常現れる。R が p 個の元からなる体で、χ が非自明であれば、その絶対値は p1/2 となる。二次の場合のガウスの結果に続いて、一般のガウス
平面的でないグラフ 平面グラフ(へいめんグラフ、英: plane graph)は、平面上の頂点集合とそれを交差なく結ぶ辺集合からなるグラフである。平面グラフと同型なグラフを平面的グラフ (planar graph) という。平面的グラフであっても、描き方によっては平面グラフにならない。 平面
変数の時間変数を持たない平面波と見做すことができた。 正弦平面波は、正弦波の多次元への拡張の1つで、代表的な平面波である。正弦平面波には、実正弦平面波と複素正弦平面波がある。正弦平面波のことを単に平面波ということもあるが、正弦平面波ではない平面波もある。 実正弦平面波は、数学的には振幅 A、波数ベクトル K、位相項
例として、直線は二次元空間における超平面であり、平面は三次元空間における超平面である。また三次元空間内の直線は超平面でなく、全空間を二つの成分に分けはしない(実際、三次元空間における直線の補集合は連結である)。 ユークリッド空間の任意の超平面はちょうど二つの単位法ベクトルを持つ。 アフィン超平面は、線型結合(斜