Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
コーシーの冪根判定法(―のべきこんはんていほう、root test) とは、無限級数の収束性を判定する方法の一つである。とりわけ、冪級数に関連することに有用である。「コーシーの冪根判定法」という名前は、これを最初に発見したオーギュスタン=ルイ・コーシーに由来する。 C = lim sup n → ∞
粒子凝集(英語版)- ファンデルワールス力や化学結合を介して、分散質粒子(原子や分子)どうしが直接相互に引き合い、吸着集合して沈降する現象。凝析とも。 粘土粒子の凝集による土壌構造の形成 大気中で放出された気体が微小な二次生成粒子を形成するプロセス 拡散律速凝集 - ブラウン運動
数学において、ディリクレの判定法(ディリクレのはんていほう、英: Dirichlet's test)は、級数の収束判定法の一つである。名称はこれを記述したペーター・グスタフ・ディリクレにちなんでいるが、発表されたのは彼の死後、1862年の "Journal de Mathématiques Pures
コーシー–アダマールの定理(コーシー–アダマールのていり、英語: Cauchy–Hadamard theorem)とは、複素解析学の定理の1つであり、フランスの数学者オーギュスタン・ルイ・コーシーとジャック・アダマールにちなんで命名された。 一複素変数 z に関する、以下のような冪級数を考える。 f
コーシー=コワレフスカヤの定理(コーシー=コワレフスカヤのていり、英: Cauchy–Kovalevskaya theorem)とは偏微分方程式の解の存在と一意性についての基礎定理。解析性についての仮定の下、局所解の存在と一意性を保証する。常微分方程式の場合と準線形な偏微分方程式の特別な場合の結果
凝集度が高い」とか「凝集度が低い」といった言い方で使われる。凝集度の高いモジュールは、堅牢性、信頼性、再利用性、読みやすさなどの点で好ましく、凝集度の低いモジュールは保守/評価/再利用/読解が難しいため好ましくないとされる。 凝集度は結合度と組み合わせて議論されることが多い。凝集度
コーシー オーギュスタン=ルイ・コーシー - フランスの数学者。 コーシー (クレーター) まれにコーヒーをさすこともある。 このページは曖昧さ回避のためのページです。一つの語句が複数の意味・職能を有する場合の水先案内のために、異なる用法を一覧にしてあります。お探しの用語に一番近い記事を選んで下さ
数学におけるワイエルシュトラスのM判定法(わいえるしゅとらすのえむはんていほう、英: Weierstrass M-test)とは、無限級数に対する比較判定法に類似した判定法で、実数あるいは複素数に値をとる関数を項とする級数に適用する方法である。 {fn} を集合 A 上で定義された実数値ないし複素数値関数列とする。ある正数