Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
Hahn–Banach theorem)は、関数解析学の分野における中心的な道具で、ベクトル空間の部分空間上で定義される有界線形汎関数が全空間へ拡張できることについて述べたものである。これにより、どのようなノルム線形空間においても、その上で定義される連続線形汎関数
Banach fixed-point theorem)は、距離空間の理論において重要な役割を担う不動点定理であり、縮小写像の定理あるいは縮小写像の原理としても知られる。この定理はある自己写像の不動点の存在と一意性を保証するものであり、そのような不動点の構成法を提供するものである。1922年に初めて提唱
の点での評価(evaluation)であるような一様環。 C*-環:ヒルベルト空間上の有界作用素環の閉 ∗-部分環。 測度環(英語版):局所コンパクト群上のラドン測度全体の成すバナッハ環で、二つの測度の積は測度の畳み込みで与えられる。 冪級数を介して定義されるいくつかの初等関数は、任意の単位的バナッハ環
2つの生成元を持つ自由群 F 2 {\displaystyle F_{2}} の「パラドキシカルな分割」を見つける。 自由群 F 2 {\displaystyle F_{2}} と同型な3次元の回転群を見つける。 2で作った回転群のパラドキシカルな分割と選択公理を用いて2次元球面の分割を作る。 3の2次元球面の分割を3次元球の分割に拡張する。
公理に基づき, 論証によって証明された命題。 また特に, 重要なもののみを定理ということがある。
も定理に関わる文章が見られる。しかし、これはバビロニア数学の影響を受けた結果ではないかという推測もされているが、結論には至っていない。 「ピュタゴラス(ピタゴラス)の定理」という呼称が一般的になったのは、西洋においても少なくとも20世紀に入ってからである。 日本の和算でも、中国での呼称を用いて鉤股弦
ロッサーの定理(英: Rosser's theorem)とは、ジョン・バークリー・ロッサーが1938年に証明した、素数に関する定理である。 Pn を n 番目の素数とする(P1 = 2、P2 = 3、...)。このとき、次の不等式が成立する。 Pn > n log n Rosser, J. B. "The
リウヴィルの定理には以下の4つの定理が存在する。 リウヴィルの定理 (解析学) - 解析学においてジョゼフ・リウヴィルにちなんだ定理。 リウヴィルの定理 (物理学) - ハミルトン力学において位相空間の体積要素は時間変化しないという定理。 リウヴィル=アーノルドの定理 -