Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
対角行列の行列式は、各対角成分の総乗 Πci に等しい。対角行列の行列式は、対角成分が等しい上三角行列、下三角行列の行列式とも等しくなる。 対角行列の転置行列は同一である。そのため対角行列は対称行列でもある。 対角行列の逆行列は対角成分の逆数を並べた対角行列である。 [ c 1 0 c 2 ⋱ 0 c n ] − 1 = [
対角化(たいかくか、diagonalization)とは、正方行列を適当な線形変換によりもとの行列と相似な対角行列に変形することを言う。あるいは、ベクトル空間の線形写像に対し、空間の基底を取り替え、その作用が常にある方向(固有空間)へのスカラー倍(固有値)として現れるようにすること。対角化
数学の一分野線型代数学における三角行列(さんかくぎょうれつ、英: triangular matrix)は特別な種類の正方行列である。正方行列が 下半三角または下三角であるとは主対角線より「上」の成分がすべて零となるときに言い、同様に上半三角または上三角とは主対角線より「下」の成分がすべて零となるときに言う。三角行列
i_{k})} を共に満たすことである。 種々の対称行列および別の種類の対称性を持つ行列 分散共分散行列 コクセター行列 ハンケル行列 ヒルベルト行列 交代行列(歪対称行列、反対称行列) 巡回行列 中心対称行列(英語版) 逆対角対称行列(英語版) テープリッツ行列 ^ Shilov 1974, p. 115
(1)二つの物が向かい合う。 あるものに向かう。
四辺形で互いに向かい合う角。 あるいは三角形の一辺に対して向かい合った角。
行列 A = [ cos ( α ) − sin ( α ) sin ( α ) cos ( α ) ] {\displaystyle A={\begin{bmatrix}\cos(\alpha )&-\sin(\alpha )\\\sin(\alpha )&\cos(\alpha )\end{bmatrix}}}
n)行列を直交行列(またはユニタリ行列)U,Vと対角行列Dに分解 A = UDV* 正方行列 零行列 対角行列 三角行列 ハンケル行列 テプリッツ行列 転置行列 随伴行列 対称行列 エルミート行列 正規行列 - ユニタリ対角化可能な行列のクラス 単位元 - 単位行列 逆元 - 正則行列 - 逆行列 直交行列