Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
多体系 古典論における多体系 → 多体問題を参照 量子論における多体系 → 多体問題 (量子論)を参照 このページは曖昧さ回避のためのページです。一つの語句が複数の意味・職能を有する場合の水先案内のために、異なる用法を一覧にしてあります。お探しの用語に一番近い記事を選んで下さい。このページへリンクし
※一※ (名)
数が少ないこと。
ないが、人工的な例はカントールの対角線論法を用いて容易に作れる。ネイピア数 e, 1/π, オイラー–マスケローニ定数 γ などは周期でない数の尤もらしい候補と考えられる。 周期は、代数的数と超越数の間を埋める橋渡しとなるものである。代数的数のクラスは多くのよく知られた数学定数を含めるためには狭す
多数。 すうた。
(名詞的にも用いる)
〔古くは「すた」〕
と1対1に対応している。 この代数関数論から、より高次元の代数多様体を考えるにあたっては代数多様体としてはコンパクトなものを考え、その上の関数としては有理型関数あるいはコンパクトなもの同士の間の正則写像を考えると都合が良い、という教訓が得られる。この要請を満たす代数多様体は射影空間の中で定義される射影代数多様体として実現できる。