Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
的な特徴を浮き彫りにすることができる[要出典]。 付加構造の一つの例は、順序関係 ≤ で、これによりベクトルの比較が行えるようになる。例えば、実 n-次元空間 Rn は、ベクトルを成分ごとに比較することで順序づけることができる。また、ルベーグ積分は函数を二つの正値函数の差 f = f + − f −
空間ベクトル(くうかんベクトル、ドイツ語: Vektor, 英語: vector, ラテン語: vector, 「運搬者、運ぶもの」より)は、大きさと向きを持った量である。ベクタ、ベクターともいう。漢字では有向量と表記される。ベクトルで表される量をベクトル量と呼ぶ。 例えば、速度や加速度、力はベクトル
本節では、そうしたプラスアルファの性質のうち代表的なものを紹介する。 分離公理とは、位相空間 X 上の2つの対象(点や閉集合)を開集合により「分離」(separate)する事を示す一連の公理、もしくはそこから派生した公理である。 代表的な分離公理としてハウスドルフの分離公理があり、これは以下のような公理であり、前述のようにこれは有向点族の収束の一意性と同値である。
ウィキブックスに位相空間論関連の解説書・教科書があります。 位相空間論(いそうくうかんろん)、もしくは一般位相空間論(いっぱんいそうくうかんろん英: general topology、point-set topology)とは、位相空間の性質やその上に定義される構造を研究対象とする数学の分野である。 一般位相空間
位相空間論およびそれに関連する数学の各分野において、等化空間(とうかくうかん、英: identification space)または商位相空間(しょういそうくうかん、英: quotient topological space)あるいは単に商空間 (quotient space) とは、直観的には与えられた空間のある種の点の集まりを「貼合せ」("gluing
数ベクトル空間(すうベクトルくうかん、space of numerical vectors, numerical vector space)とは、「“数”の組からなる空間」(数空間)を自然にベクトル空間と見たものである。 ここでいう“数”の集合 K は四則の定められた代数系、殊に可換体で順序や位相の
。ベクトル空間モデルによる検索は高次元のベクトル空間上に配置した検索対象のベクトル表現と検索語のベクトル表現の相関量をコサイン類似度、内積、距離等によって計算して関連度を求める。 単語文書行列とはメタデータの生成・表現法の一つであり、ベクトル空間モデルによる検索を行う際に非常に頻繁に用いられるメタ
は、ユークリッド空間内の曲線や曲面における接ベクトルの一般化ともいえる。 接ベクトル空間は、多様体上の点ごとに定義されるベクトル空間である。接ベクトル空間の元を接ベクトルという。全ての点で接ベクトルが定まっているとベクトル場というものが定義できる。ベクトル場は多様体の形を調べたり、多様体上の粒子の運