Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
巡回行列(じゅんかいぎょうれつ)または循環行列(じゅんかんぎょうれつ、英: Circulant matrix)は、テプリッツ行列の特殊なものであり、各行ベクトルが1つ前の行ベクトルの要素を1つずらして配置した形になっているものである。数値解析において、巡回行列
X の行列式として定義することができる。これは行列の成分を変数とする多項式の形でかけ、二次の場合と同様にこれは正則性など正方行列の重要な性質に対する指標を与えている。一次方程式系が与えられるとき、方程式の係数行列に対してその行列式の値を調べることにより、方程式系の根の
数学の線型代数学において、行列 A の小行列式(しょうぎょうれつしき、英: minor, minor determinant)とは、A から1列以上の行または列を除いて得られる小さい正方行列の行列式のことである。 正方行列から行と列をただ1つずつ取り除いて得られる小行列式(first minors;
\dotsc ,n_{N}\ } は0か1のどちらかである。ボーズ粒子の場合、 n 1 , … , n N {\displaystyle n_{1},\dotsc ,n_{N}\ } は0からNまでの値をとり得る。 これは生成演算子 a ^ 1 † , … , a ^ N † {\displaystyle
上の函数を言う。ここで fi(j)(x) ≔ d jf/dx j(x), また fi = (fi(0),..., fi(n − 1))t である。つまり、第 1 行は各函数、第 2 行はそれらの 1 階導函数、以下同様に第 (n − 1)-階導函数までを並べてできる行列の行列式である。 考える函数族
は、yxz系で表したときのオイラー角が α, β, γ であるような回転を表す。 任意の回転行列は、ある軸 n {\displaystyle \mathbf {n} } まわりの角度 θ {\displaystyle \theta } の回転という形に表示できる(オイラーの定理 (剛体)
「巡回」で始まるページの一覧 タイトルに「巡回」を含むページの一覧 パトロール(曖昧さ回避) 巡回警備
世紀のフランスの数学者であるアレクサンドル=テオフィル・ヴァンデルモンド(フランス語版、英語版)に因む。ヴァンデルモンドは「ファンデルモンド」と表記されることもある。ファン (前置詞) も参照。 各行が初項1の等比数列である正方行列 V := [ 1 x 1 x 1 2 ⋯ x 1 n − 1 1