Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
数学原論(すうがくげんろん、仏: Éléments de mathématique)は、数学者集団ニコラ・ブルバキ (Nicolas Bourbaki) による数学に関する専門書である。2016年現在11の部門からなり、各部門が1つあるいは複数の章に分かれている。最初の巻はエルマン (Hermann)
ディオファントスはまた、線型な不定方程式の整数解を求める方法について考察した。線型不定方程式とは、解の単一の離散集合を得るには情報が不足している方程式を指す。例えば、 x + y = 5 {\displaystyle x+y=5} という方程式は、x と y が整数だとしても解
数理論理学(すうりろんりがく、英 : mathematical logic)または現代論理学、記号論理学、数学基礎論、超数学は、数学の分野の一つであり、「数学の理論を展開する際にその骨格となる論理の構造を研究する分野」を指す。数理論理学(数学基礎論)と密接に関連している分野としては計算機科学や理論計算機科学などがある。
基礎論から数理論理学へと進化していった。 (以上、岩波数学辞典第4版の記載に基づく。ただし、直観主義の説明中の例は、照井一成「コンピュータは数学者になれるのか?」(青土社)の例から拝借した。) 日本では、数学基礎論は、歴史的経緯により、本来の数学の基礎付け
はその体上で根を持つと結論できるか? ある場合にはその問題に答えることができ、別の場合には答えは否定的だが、(予想:)障害を知りしたがっていつこれがうまくいくかを知ろうとする。 有限体上の多項式方程式系が与えられたとき、どうやって根の個数を数えるか? 体を拡大したとき、根はどのように増えるか?
数学における論理式(ろんりしき: logical expression)とは、真理値を必要とする場所にあらわれる式で、原子論理式や、それを論理演算子で結びあわせた式である。ここでは古典論理のものを例示するが、非古典論理をはじめ、他の多くの論理体系についても同様な議論は可能である。 命題論理の論理式は命題論理
2つの例を拡張し、素数と素数の間の「絡まり」(link)を考える結び目と素数の間の類似が存在する。素数の三つ組 (13, 61, 937) は modulo 2 で「絡まっている」(レダイの記号(英語版)は −1 である)が、modulo 2 で「どの 2 つも絡まっていない」(ルジャンドル記号はすべて
{\text{prime}}\}} によって得られる数論的関数について述べる。 互いに素である正整数 m と n に対して、 a ( m n ) = a ( m ) + a ( n ) {\displaystyle a(mn)=a(m)+a(n)} が成立するとき、加法的関数(additive function)という。