Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
花軸についている花の配列状態。 無限花序と有限花序に大別される。
限度・限界のある・こと(さま)。
の群の構造には n の素因数分解に依存してある制限が加わる。例えば素数 p , q に対して、 q < p かつ p -1が q で割り切れない場合は、位数 pq の群は必ず巡回群となる。必要十分条件については巡回数 (群論)(英語版)を参照されたい。 n に平方因子が存在しない場合、位数 n の群
このタイプの有限オートマトンは入力を受容(accept)したり、理解(recognize)して、外界に結果を知らせるために状態(state)を使用する。つまり、最終的に受容状態になったかどうかで「はい」または「いいえ」のいずれかを出力として返す。FSMの全状態は受容状態かそうでないかのいずれかである。全入力
有限体(ゆうげんたい、英語:finite field)とは、代数学において、有限個の元からなる体、すなわち四則演算が定義され閉じている有限集合のことである。主に計算機関連の分野においては、発見者であるエヴァリスト・ガロアに因んでガロア体あるいはガロア域(ガロアいき、Galois field)などとも呼ぶ。
の部分集合 A が補有限(ほゆうげん、英: cofinite; 余有限)であるとは、A の X における補集合が有限集合であることをいう。すなわち、補有限集合 A は「 X の有限個の例外を除く全ての元を含む」ような X の部分集合である。補集合が有限でなく可算である場合、その集合は補可算(あるいは余可算)であるという。
集合論および順序論(英語版)における極限順序数(きょくげんじゅんじょすう、英: limit ordinal)は 0 でも後続順序数でもない順序数を言う。あるいは、順序数 λ が極限順序数であるための必要十分条件は「λ より小さい順序数が存在して、順序数 β が λ より小さい限り別の順序数 γ が存在して
、先端部が五つに割れて星形になったもので、これを筒状花(つつじょうか)あるいは管状花(かんじょうか)という。もう一つは、花びらの基部がやはり細い筒となるが、その先は一つの方向に向けて、幅広い平坦な広がりを作るもので、これを舌状花(ぜつじょうか)という。 筒状花は花弁が筒状になったもののことで、ヒマ