Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
をこの角錐の底面 (base) と呼ぶ。頭頂点 A と底面 B との距離 h はこの角錐の高さ (height) と呼ばれる。 底面 B が n 角形であるような角錐を n 角錐 (n-gonal pyramid) と呼ぶ。特に、頭頂点から底面へ下した垂線の足が、底面の重心に重なる直錐体で、底面が正n角形をなすものは、正n
錐台(すいだい、英: Frustum)は、錐体から、頂点を共有し相似に縮小した錐体を取り除いた立体図形であり、切頭錐体ともいう。あるいは言い換えれば、錐体面と2枚の平行な平面によって囲まれる立体図形である。 円錐からできる錐台を円錐台(切頭円錐)、角錐からできる錐台を角錐台(切頭角錐)、n 角錐からできる錐台を
三角錐は、最小の頂点数で構成することができる立体であると表現することもできる。 幾何学において、角錐の側面は全て三角形であるが、この場合は底面も三角形であるから、三角錐は全ての面が三角形である立体である。 底面が正三角形である場合、正三角錐(せいさんかくすい、regular
双角錐(そうかくすい、bipyramid, dipyramid)または重角錐(じゅうかくすい)、両角錐(りょうかくすい)とは、角柱の双対多面体である。二つの合同な角錐を底面同士で貼り合わせた形状をしており、全ての面が二等辺三角形で構成されている。 双角錐のなかで、双対となる角柱の底面が正多角形のも
四角錐(しかくすい、英: Square pyramid)とは、底面が四角形の錐体である。四角形は多角形なので、四角錐は角錐でもある。 長方錐(ちょうほうすい) - 底面が長方形である四角錐。 方錐(ほうすい) - 底面が正方形である四角錐。 正四角錐(せいしかくすい) -
五角錐(ごかくすい、英: pentagonal pyramid)とは、底面が五角形の角錐である。特に底面が正五角形で、頭頂点から底面に下ろした垂線が底面の中心で交わるものを正五角錐といい、その側面は二等辺三角形である。正五角錐の内、側面が正三角形のものは2番目のジョンソンの立体である。 表面積: 一辺を
円錐台(えんすいだい、英: circular truncated cone)は、底面が円である錐台である。つまり、円錐を底面に平行な平面で切り、小円錐の部分を除いた立体図形である。 プリンの形は一般的には円錐台である。受験数学、特に日本の中学入試でよく出題される立体である。
双三角錐(そうさんかくすい、Triangular dipyramid, Trigonal dipyramid)とは、赤道面が三角形の双角錐である。2つの合同な三角錐を底面同士で貼り合わせた形状をしており、6枚の三角形でできている。また三角形の形により次のような特別なものもある。