Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
に対して、n 次元球面は正の定曲率(英語版)の単連結 n 次元多様体である。n 次元球面にはいくつかの他の位相的記述がある。例えば、2 つの n 次元ユークリッド空間を貼り合わせることによって、n-次元超立方体の境界を一点と同一視することによって、あるいは (n − 1) 次元球面の懸垂を(帰納的に)作ることによって構成できる。
例として、直線は二次元空間における超平面であり、平面は三次元空間における超平面である。また三次元空間内の直線は超平面でなく、全空間を二つの成分に分けはしない(実際、三次元空間における直線の補集合は連結である)。 ユークリッド空間の任意の超平面はちょうど二つの単位法ベクトルを持つ。 アフィン超平面は、線型結合(斜
平面でない, 連続的にまがった面。
数学において、K3曲面 (英: K3 surface) とは、不正則数が 0 で、自明な標準バンドルを持っているという複素解析的、もしくは代数的な滑らかな最小完備曲面をいう。 エンリケス・小平の曲面の分類では、それらは小平次元がゼロの曲面の 4つのクラスのうちの一つである。 K3曲面は、複素トーラスとともに
ポテンシャルエネルギー曲面(ポテンシャルエネルギーきょくめん、英: potential energy surface, PES)とは、特定のパラメータ(原子のデカルト座標や結合角、二面角など)に対して系のエネルギーを表したものである。エネルギーは単一の座標の関数である場合もあれば、複数の座標の場合も
数学における双曲面(そうきょくめん、英語: Hyperboloid)は、二次曲面の一種で、三次元空間内の曲面として x 2 a 2 + y 2 b 2 − z 2 c 2 = 1 {\displaystyle {x^{2} \over a^{2}}+{y^{2} \over b^{2}}-{z^{2}
の交点は消去され、図には(向き付けられた)有限個の円周が残る。これらの円周をザイフェルト円周またはザイフェルト周という。 図1(平滑化前) 図2(平滑化前) 図3(平滑化後) ステップ2 各ザイフェルト円周に対して、その円周を境界に持つような円板を張る。ただし、元の射影図によってはあるザイフェルト
(M,g)} がリー群 G の自由な等長作用を持つリーマン多様体とし、M を G の軌道に直交する 2-平面すべての上で正の断面曲率を持つとすると、商計量をもつ多様体 M / G {\displaystyle M/G} は正の断面曲率を持つ。この事実は、上記の例と同じ、球面や射影空間である古典的は正