Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
〔数〕
〖gauss〗
〖Karl Friedrich Gauß〗
of curvature)、あるいは、曲率線(curvature lines)は、主方向に常に接している曲線である(曲率の線は主方向の場の積分曲線(integral curve)である)。各々の非臍点を通して曲率線は 2本あり、直交している。 臍点の近くでは、曲率線は典型的には、次の
リーマン幾何学におけるスカラー曲率(すからーきょくりつ、英: Scalar curvature)またはリッチスカラー(英: Ricci scalar)は、リーマン多様体の最も単純な曲率不変量である。リーマン多様体の各点に、その近傍における多様体の内在的な形状から定まる単一の実数を対応させる。
ガウス賞(ガウスしょう、Carl Friedrich Gauss Prize)は、社会の技術的発展と日常生活に対して優れた数学的貢献をなした研究者に贈られる賞。4年に1度の国際数学者会議(ICM)の開会式において授与される(同時に授賞式が行われるものとしてフィールズ賞とネヴァンリンナ賞がある)。
を法とする整数の剰余環上のガウス和は、ガウス周期(英語版)と呼ばれる密接に関連する和の線形結合である。 ガウス和の絶対値は、有限群上のプランシュレルの定理の応用の場面で通常現れる。R が p 個の元からなる体で、χ が非自明であれば、その絶対値は p1/2 となる。二次の場合のガウスの結果に続いて、一般のガウス
〔数〕 曲率円の中心。