Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
零ベクトル(ゼロベクトル、れいベクトル)あるいはゼロベクトルとは、ベクトルの加法においての単位元。直感的な理解においては大きさが0で向きを持たないベクトル。 太字で0(あるいは黒板太字)と表される。主に高校数学においては 0 → {\displaystyle {\vec {0}}}
ベクトル解析(ベクトルかいせき、英語:vector calculus)は空間上のベクトル場やテンソル場に関する微積分に関する数学の分野である。 多くの物理現象はベクトル場やテンソル場として記述されるため、ベクトル解析は物理学の様々な分野に応用を持つ。 物理学では3次元ユークリッド空間上のベクトル
ベクトル場(ベクトルば、英: vector field)とは、数学において、幾何学的な空間の広がりの中でベクトル的な量の分布を表すものである。単純化された設定のもとではベクトル場はユークリッド空間 Rn (またはその開集合)からベクトル空間 Rn への関数として与えられる。(局所的な)座標系のもとで
ベクトル計算機(ベクトルけいさんき)は、計算機科学分野の並列計算に関する類型の一つであるベクトル演算(SIMDを参照)を実行可能なコンピュータのこと。 狭義ではベクトル演算のために最適化された設計として、高性能でパイプライン化された実行ユニットを持ち、その演算能力を可能な限り発揮できるように構成され
アルゴリズムの訓練段階では、訓練例の特徴ベクトルとクラスラベルだけを保持している。実際の分類段階では、クラスが未知である標本の特徴空間におけるベクトルが与えられる。この新たなベクトルと既存のベクトル群との距離を計算し、k 個の最近傍の標本が選択される。新たなベクトルを特定のクラスに分類する方法はいくつかある。最も一般的な手法は、k
数学の分野におけるベクトル測度(ベクトルそくど、英: vector measure)とは、ある集合族上で定義される、ある特定の性質を備えたベクトル値関数である。非負実数値のみを取る測度の概念の一般化である。 集合体 ( Ω , F ) {\displaystyle (\Omega ,{\mathcal
は、ユークリッド空間内の曲線や曲面における接ベクトルの一般化ともいえる。 接ベクトル空間は、多様体上の点ごとに定義されるベクトル空間である。接ベクトル空間の元を接ベクトルという。全ての点で接ベクトルが定まっているとベクトル場というものが定義できる。ベクトル場は多様体の形を調べたり、多様体上の粒子の運
擬ベクトル(ぎベクトル、英: pseudo vector)は座標の反転に対し符号が変わらない(向きが反転する)ベクトル。 擬ベクトルのことを軸性ベクトル(英: axial vector)とも呼ぶ。反対に座標を反転して符号が反転する(向きが変わらない)ベクトルを極性ベクトル(英: polar vector)と呼ぶ。