Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
混線内接円(こんせんないせつえん、英: mixtilinear incircle)とは、ある三角形の二辺に接し、かつその外接円に内接する円のことである。三角形の頂点 A {\displaystyle A} を含む二辺に接する混線内接円は A {\displaystyle A} 混線
初等幾何学における多角形の外接円(がいせつえん、英: circumscribed circle, circumcircle)は、その多角形の全ての頂点を通る円をいう。外接円の中心を外心 (circumcenter) といい、その半径を外接半径 (circumradius) という。 外接円を持つ多角形は、円内接多角形
円である。傍接円の中心を傍心(ぼうしん、excenter)と呼ぶ。全ての三角形は、各辺に接する合計3つの傍接円を持つ。 内心は、3つの角の二等分線上にある。傍心は、1つの角の二等分線と他の2つの角の外角の二等分線上にある。内心と傍心は「三角形の3つの頂点と垂心」という位置関係にある。 内接円
内接および外接は tangency: 「ちょっと触れる」ことを意味する概念。一次の接触。 →接する (数学)の項を参照。 inscribe / circumscribe: 「外側の図形の内側に図形がびっちり詰まっている様子」を表す概念。 →内接図形の項を参照。 接点 デジタル大辞泉・大辞林・日本大百科全書・世界大百科事典『内接』
初等幾何学における凸多面体の内接球面(ないせつきゅうめん、英: inscribed sphere, insphere; 内球面)は、その多面体に含まれる球面で、その多面体の各面に接するものを言う。これはその多面体の内部に全く含まれる最大の球面であり、またその多面体の双対多面体の外接球面の双対である。 多面体 P の内接球面の半径を、P
三角形の内接正方形は相異なる二種類である。鈍角三角形は、内接正方形を一種類しか持たず、その内接正方形は一辺をもとの三角形の最長辺の一部と共有する。 ルーローの三角形やもっと一般の定幅曲線は、適当な大きさの正方形の内部に、任意の向きで内接させることができる。 接円錐曲線(英語版) 円内接四辺形
円に内接する四角形(えんにないせつするしかっけい、英: cyclic quadrilateral)または単に内接四角形(ないせつしかっけい、英: inscribed quadrilateral)とは、4頂点が1つの円周上にある四角形のことである。この円のことを外接円といい、その上にある4頂点は共円で
骨格筋 > 体肢筋 > 上肢の筋 > 前腕筋 > 屈筋群 > 円回内筋 円回内筋(えんかいないきん、pronator teres muscle)は人間の上肢の筋肉で肘関節の屈曲、前腕の回内を行う。 浅頭・上腕骨頭は上腕骨内側上顆、深頭・尺骨頭は尺骨鈎状突起から起こり、2頭は合流して回内筋粗面で停止する。