Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
について、(定義より公比は 0 でないため)公比 r は任意の n 番目の項とその次の項の比 r = an+1/an から得られる(特に r = 1 の場合は公差が 0 の等差数列でもある)。等比数列の各項は初項 a と公比 r を用いて具体的に以下のように表せる。 a , a r , a r 2 , … , a
漸化式を解くとは、漸化式で与えられている数列 (an) の一般項 an を n の陽な式で表すことである。 等差数列や等比数列は、その定義から極めて単純な漸化式を持つ。一般の等差数列に対する漸化式は an+1 = an + d という形に表される。定数 d はその等差数列の公差である。この漸化式は簡単に解けて、一般項は an =
数学において、算術数列と幾何数列の項ごとの積によって与えられる、算術–幾何数列 (arithmetico–geometric sequence) は、象徴的に「算術⋅幾何数列」とか「(等差)×(等比)-型の数列」などのようにも呼ばれる。より平易に述べれば、一つの算術×幾何数列の第 n-項は、適当な算術数列の第 n-項と幾何級数の第
数学における算術幾何数列(さんじゅつきかすうれつ、仏: suite arithmético-géométrique; 英: arithmetico–geometric sequence)は、一次の漸化式を満足する数列で、算術数列および幾何数列をともに一般化する。 ここでは任意の可換体 K をひとつ固定する(例えば実数体
common difference)という。 例えば、5, 7, 9, … は初項 5, 公差 2 の等差数列である。同様に、1, 7, 13, … は公差 6 の等差数列である。 等差数列の初項を a0 とし、その公差を d とすれば、第n 項 an は a n = a 0 + n d {\displaystyle
数学で、ファレイ数列(ファレイすうれつ、フェアリー数列とも, Farey sequence [ˈfɛəri -]) とは、既約分数を順に並べた一群の数列であり、以下に述べるような初等整数論における興味深い性質を持つ。 正確にいえば、 自然数 n に対して、n に対応する(または、属する)ファレイ数列 (Farey
順番が決まっている事で、順番を変更したものは別の列であるとみなされる。たとえば列「A,B,C」と列「B,C,A」は異なる列である。 数を並べた列を数列、(何らかの空間上の)点を並べた列を点列、文字を並べた列を文字列(あるいは語)という。このように同種の性質○○を満たすもののみを並べた場合にはその列
、まだドラフトの段階となっている。特記すべき点として、自然乱数はその発生源のエントロピーの低下に備えて、疑似乱数と混合する(たとえば二進乱数なら排他的論理和を取るなど)ことが望ましいとしていることがある(これは望ましくない場合もある。コンピュータの応答などで遅滞が許されない場合は疑似乱数にフォールバ