Ngôn ngữ
Không có dữ liệu
Thông báo
Không có thông báo mới
複数多項式2次ふるい法 (MPQS, Multiple polynomial quadratic sieve) 数体ふるい法 (NFS, Number field sieve) 一般数体ふるい法 (GNFS, General number field sieve) 特殊数体ふるい法 (SNFS,
− 1) という因数分解の結果を得る。 因数定理を利用する。すなわち f(x) の値を 0 にする x の値(根)を見つける。f(α) = 0 となったとすれば、x − α が f(x) の因数の1つである。 たとえば 2x4 − 5x3 − 8x2 + 17x − 6 を因数分解することを考える。この式に
階数因数分解(かいすういんすうぶんかい、英: rank factorization)あるいは階数分解(rank decomposition)とは、数学の線型代数学の分野において、階数が r {\displaystyle r} のある与えられた m × n {\displaystyle m\times
の3つである。また 7 は素数であるため、7 の素因数は 7 自身のみとなる。素因数のことを素因子(そいんし)、素因数分解のことを素因子分解ということもある。 2つの自然数が互いに素であることと、2つの自然数が共通の素因数を持たないことは同値である。なお 1 は素因数を持たない数であり、したがって 1 は全ての(1
O(1, 1) と呼ばれる群を成す。この群は双曲的回転と z ↦ ±z および z ↦ ±z* で与えられる4つの離散的鏡映変換の組み合わせからなる(双曲的回転の全体は SO+(1, 1) で表される O(1, 1) の部分群を成す)。 双曲角 θ を双曲回転 exp(jθ) へ写す指数写像 exp
環のイデアルの分解の研究は Z[√-5] のような環において一意分解が成り立たない 6 = 2 ⋅ 3 = ( 1 + − 5 ) ( 1 − − 5 ) {\displaystyle 6=2\cdot 3=(1+{\sqrt {-5}})(1-{\sqrt {-5}})} ことの救済として始まる。数が一意
代数学における部分分数分解(ぶぶんぶんすうぶんかい、英: partial fraction decomposition)とは、有理式(あるいは分数式ともいう、多項式の商で表される式のこと)に対し、その有理式の分母が互いに素な多項式の積で表されるとき、その有理式を多項式と複数の有理式(ただし、分子の次数は分母
(1)ある結果を引き起こすもと。 もとからあった原因。